
1

Wprowadzenie 4
Od autora 4
Wstęp 5

Podstawy testowania 7
Czym jest testowanie? 7
Przypadki testowe (Test Cases) 7
Zgłoszenie defektu 13
Cykl życia defektu 15

Wydanie pierwsze
ISBN 978-83-955930-0-0
© Copyright – Bugfree Krzysztof Jadczyk,
Krzysztof Jadczyk, 2019
Korekta – Małgorzata Woźna
Wydawca – Bugfree Krzysztof Jadczyk,
Wrocław 2019

2

3

Wprowadzenie

Od autora
Jak to się stało, że napisałem tę książkę? Przecież nie było to moim marzeniem
z dzieciństwa. Najpierw pojawił się pomysł pisania artykułów, które publikuję od września
2018 roku na LinkedIn’ie, a także na Facebooku. Od czerwca 2019 moje wpisy znajdziesz na
bugfreeblog.com​. Tematyka jest różna, choć zdecydowanie przeważa testowanie
oprogramowania, które stało się moją pasją jakieś 13 lat temu. To wtedy zacząłem stawiać
pierwsze kroki w zawodzie. Po napisaniu ponad trzydziestu artykułów postanowiłem zabrać
się za większy projekt. Tak narodził się pomysł napisania tej książki. Ten, kto miał okazję
śledzić moje poczynania na tych portalach społecznościowych, znajdzie tu treści, które już
wcześniej ujrzały światło dzienne. Część z nich jest mniej lub bardziej przeredagowana, by
tworzyć spójną całość również z nowymi, wcześniej niepublikowanymi fragmentami.

Książka jest kontynuacją pewnej myśli, która towarzyszyła mi podczas tworzenia
poszczególnych wpisów. Zamysł był taki, by opisać zagadnienia związane z pracą testera dla
osób, które rozpoczynają przygodę z testowaniem. Książka powstała z mojej pasji
testowania, by pobudzić tę pasję u innych.

Obserwując grupy tematyczne związane z testowaniem w mediach społecznościowych,
widzę, że coraz więcej osób chce rozwijać się w kierunku testowania lub chociaż zobaczyć,
czy się w tym odnajdą. Słyszałem mnóstwo pytań o to, jak zacząć, czego się uczyć, z jakich
materiałów korzystać i zrozumiałem, że być może wciąż zbyt mało jest przydatnych treści.
Dlatego teraz chciałbym oddać Ci, drogi Czytelniku, tę oto książkę. Mam nadzieję, że
znajdziesz w niej wartościowe treści.

Zanim jednak przejdziesz do kolejnych rozdziałów, chciałbym, żebyś wiedział, że treści
zawarte na tych stronach są efektem mojego doświadczenia i przedstawiają mój punkt
widzenia. Nie znajdziesz tu uniwersalnych zasad do zastosowania w każdej sytuacji. Zresztą
tak właśnie jest z samym testowaniem. W swojej przyszłej pracy jako tester możesz nie
znaleźć jednej poprawnej odpowiedzi na rozwiązanie pewnego zagadnienia. Najczęściej
będzie to sytuacja typu: TO ZALEŻY. Część rozdziałów jest tylko zajawką pewnych tematów
do dalszego zgłębienia. Celowo nie będę ich rozwijał ze względu na to, że bez problemu
znajdziesz w sieci tutoriale lub inne materiały. Nie jest to jednak znak, że dany temat nie jest
wart tego, aby poświęcić mu więcej czasu. Zdecydowanie wszystko, co jest zawarte w tej
książce, uważam za minimum, by myśleć o rozwoju w kierunku testera oprogramowania. Nie
rzucaj się od razu na naukę automatów i języków programowania. Najpierw zbuduj
fundamenty do dalszego rozwoju, którymi według mnie jest odpowiedni sposób myślenia.
Uważam, że dopiero wtedy jest sens iść dalej. Pamiętaj – najpierw solidne fundamenty,
a później stawianie murów wiedzy, na których kolejno będą utrzymywać się coraz większe
osiągnięcia.

4

https://bugfreeblog.com/

Wstęp
Ważne jeszcze jest to, żebyś odpowiedział sobie na jedno pytanie. Brzmi ono następująco:
Dlaczego chcę zostać testerem? Musisz wiedzieć, że droga, jaką obierasz, nie jest łatwa.
Samo przygotowanie, by móc pójść na pierwszą rekrutację, zajmie pewnie kilka miesięcy. I
to nie koniec. To będzie dopiero początek nieustannego uczenia się w późniejszych
miesiącach i latach pracy. Czy zatem warto iść w tym kierunku? Być może odpowiedź
znajdziesz właśnie w tej książce.

Zastanów się też, w jaki sposób chcesz tę drogę pokonać i przygotuj konkretny plan nauki.
Plan, który jak kompas będzie wskazywał kierunek wędrówki. Bez niego możesz błądzić
i momentami kręcić się bez celu, tracąc cenny czas i motywację. Nie zapomnij też
celebrować nawet małych sukcesów! Warto o tym pamiętać. Wiem to z własnego
doświadczenia. To będzie niezwykle ważne i pomoże Ci przetrwać chwile zwątpienia, które
mogą się pojawiać.

Wyznacz sobie plan i działaj. Nie ma oczywiście nic złego w pojawianiu się odstępstw od
planu. To pewnie zdarzy się nie raz i może wynikać z rosnącej wiedzy. Wtedy zmodyfikuj
plan i dostosuj go do zmieniających się warunków. Ważne, żeby ćwiczyć i iść w
odpowiednim kierunku.

5

6

Podstawy testowania

Czym jest testowanie?
Testowanie oprogramowania jest procesem związanym z wytwarzaniem oprogramowania.
Polega na weryfikacji poprawności działania aplikacji. Może być przeprowadzone w oparciu o
specyfikację i powinno sprawdzać zgodność systemu z wymaganiami użytkowników.
Testowanie jest jednym z procesów zapewnienia jakości. Musisz wiedzieć, że testowanie
samo w sobie nie podnosi jakości oprogramowania. Służy ocenie jakości, a także budowaniu
zaufania do weryfikowanego produktu. Jakość natomiast może zostać podniesiona poprzez
wprowadzenie poprawek i wyeliminowanie znalezionych błędów.

Proces testowania aplikacji może skupiać się na weryfikacji zaimplementowanych
funkcjonalności, które zostały wytworzone w oparciu o wymagania użytkownika. Mówimy
wtedy o testach funkcjonalnych. Często są też sprawdzane pewne cechy jakościowe
systemu, które nie są związane z konkretną funkcjonalnością, jak chociażby bezpieczeństwo
czy wydajność. W takim wypadku mówimy o testach niefunkcjonalnych.

Przypadki testowe (Test Cases)
Przypadki testowe są wciąż najczęściej przygotowywanym przez testerów rodzajem
dokumentacji. Z tego powodu dość często możesz trafić na pytania dotyczące tego
zagadnienia podczas rozmowy rekrutacyjnej. Warto zatem zgłębić ten temat. Jak zatem taki
przypadek testowy powinien wyglądać i jakie elementy zawierać?

Zanim przejdziemy do przykładu, zajrzyjmy najpierw do definicji zaczerpniętej ze „Słownika
wyrażeń związanych z testowaniem” SJSI.

7

Przykładowy przypadek testowy

Na potrzeby tego rozdziału oraz kolejnego, dotyczącego defektów, posłużę się zadaniem #20
z ​Mr Buggy 3​. Przygotuję do niego przykładowy przypadek testowy, żeby zademonstrować,
jak może wyglądać. Zgodnie z ideą tej książki, nie jest to jedyne słuszne podejście, bo takie
nie istnieje. Mimo tego poniższy przykład powinien dać Ci pewien pogląd na to zagadnienie.

Treść zadania:
Zadanie przedstawia funkcję wysyłania przelewów w internetowym koncie bankowym.
Odszukaj i zgłoś defekt.

Przykładowe poprawne numery rachunków:
1) 83109069928729691303181767
2) 97116052168159436723349207
3) 33102022251281637642546453
4) 63102085042134478184474438
5) 61102064838251962701343051.

Przykładowe niepoprawne numery rachunków:
1) 89105024841488137640364928
2) 89105024841488147640364345
3) 99103024841488147640384345
4) 99102024841488135640364345
5) 99102024846666135640364345.

Pola oznaczone gwiazdką są wymagane. Rozłożenie pól i przycisków jest zgodne
z wymaganiami klienta.

8

http://mrbuggy.pl/mrbuggy3/

Spójrz jeszcze na to, jak wygląda formularz.

Przypadek testowy do powyższego zadania może wyglądać jak poniżej.

Poza tym, co zawarte jest w powyższej tabeli, mogą też pojawić się dodatkowe elementy.
Jednym z nich jest priorytet, którym można określić, które z testów powinny zostać wykonane

9

w pierwszej kolejności. To może się przydać, np. kiedy brakuje czasu na wykonanie
wszystkich zaplanowanych wcześniej testów. Wtedy zyskujemy możliwość wybrania zestawu
najistotniejszych przypadków i pominięcia tych najmniej krytycznych (z niższym priorytetem).

W trakcie wykonywania testów mogą pojawić się także informacje związane ze środowiskiem
(np. TEST, UAT, SIT), na którym przypadek został wykonany. Istotne będzie też to, na jakiej
wersji aplikacji test powinien zostać wykonany oraz na jakiej konfiguracji, np. na której
przeglądarce, systemie operacyjnym czy rozdzielczości ekranu.

Warto też wiedzieć, że jest sporo narzędzi, które można wykorzystać jako repozytorium
testów. To w nich tworzone i przechowywane są przypadki testowe, które później czekają na
ich wykonanie. Więcej informacji o narzędziach znajdziesz w rozdziale „Narzędziownia”.

Egzekucja testów

Egzekucja testów (test execution) polega na wykonaniu kroków zdefiniowanych w test case,
a następnie nadaniu odpowiedniego statusu w narzędziu. Status zależy od otrzymanego
wyniku testu. Najczęściej spotykane statusy to:

➢ to do​ – test został zaplanowany i czeka na wykonanie

➢ executing/in progress​ – oznacza, że dany przypadek jest w trakcie wykonywania

➢ passed​ – w momencie kiedy test przechodzi bez problemu

➢ failed – gdy rezultat aktualny jest inny niż oczekiwany. W takim przypadku powinien
zostać zgłoszony błąd. Zgłoszenie defektu zostało opisane w kolejnym podrozdziale.
Większość narzędzi pozwala na powiązanie defektu z test casem, w trakcie
wykonania którego został wykryty

➢ blocked – status używany w przypadku, gdy wykonanie danego testu jest niemożliwe
w danym momencie.

Odpowiednie oznaczenie statusów pozwala na śledzenie postępu prac. Na bazie
zgromadzonych w ten sposób danych można też budować różnego rodzaju metryki (np.
przypadki testowe wg statusu wykonania, przypadki testowe wg priorytetu), wizualizacje. To
pozwala lepiej zobrazować status wykonania testów oraz ułatwia przekazanie informacji na
temat jakości osobom zainteresowanym. Przykładowe metryki zostały opisane w oddzielnym
rozdziale.

Po co komu przypadki testowe?

Wiesz już, jak może wyglądać test case. Teraz czas na małą dygresję, która, mam nadzieję,
rzuci trochę więcej światła na podejście do ich tworzenia. Czy zatem podczas pracy
w projekcie trzeba pisać przypadki testowe?

10

Cytując Maxa, bohatera jednego z moich ulubionych filmów „E=mc​2​”, mogę stwierdzić, że:

bo to zależy. Ci, którzy mają już trochę doświadczenia, zapewne wiedzą, o czym mówię.
Wpływ na to ma wiele czynników (wymienionych poniżej) i kontekst, w jakim przyjdzie Ci
pracować. To samo tyczyć się może innych dokumentów testerskich, takich jak Test Plan czy
Test Raport.

Co ma wpływ na naszą pracę?

➢ Organizacja, w której pracujesz – możesz spotkać się z sytuacją, w której Twoja
firma będzie miała zdefiniowane Test Policy, Test Strategy albo ogólny Proces
testowy. Z tych dokumentów może wynikać, że przypadki testowe powinny być
przygotowywane.

➢ Klient, dla którego projekt jest realizowany – sam klient też czasami wymaga
dostarczania pewnej dokumentacji związanej z testami. Powody bywają różne: od
braku zaufania do naszych testów, po konieczność dokumentowania całego procesu
wytwarzania oprogramowania. Może być to podyktowane potrzebami jego klientów
lub audytów związanych z certyfikacją. Czasami warto przypadki przygotować jako
dowód tego, co zostało zrobione, w razie gdyby klient powiedział „sprawdzam”.

I tutaj mała gwiazdka. Czasami możesz spotkać się z taką sytuacją – dla klienta
oznaczenie przypadku testowego na pass może nie być wystarczające. Pojawia się
jeszcze pojęcie test evidence, które oznacza dostarczenie dodatkowej informacji, np.
zrzutu ekranu, logów lub innego dowodu wykonania testu. Najczęściej taki dowód
powinien przedstawiać rezultat oczekiwany, ale może też być potrzebny bardziej
szczegółowy z uwiecznieniem wyniku dla każdego kroku.

➢ Czas trwania projektu – gdy masz do czynienia z krótkim projektem, to może nie
być czasu ani sensu inwestować w przypadki testowe. Wtedy lepiej skupić się na
testach eksploracyjnych niż tracić cenne godziny na dokumentowanie każdego kroku.
Dla dłuższych projektów warto zdefiniować sobie chociażby regresję lub inne
powtarzalne testy. Przygotowane przypadki mogą też być bazą do ich automatyzacji.

➢ Wiek testowanego systemu – możesz mieć okazję (tak jak ja kiedyś) pracować ze
starym systemem tzw. legacy, gdzie jedyną dostępną dokumentacją jest kod aplikacji,
a wiedza na temat poszczególnych funkcjonalności bywa mocno ograniczona.
W takim wypadku zdobycie informacji na temat tego, jak coś działa i jak to
przetestować, jest bardzo czasochłonne. Należy pilnować, by wysiłek nie poszedł na

11

marne. Trzeba więc udokumentować jego rezultaty, np. w postaci przypadków
testowych, wiki lub testów automatycznych.

➢ Metodyka, w której projekt jest realizowany – jeśli masz do czynienia z pracą
w sprintach, które kończą się sukcesem, to na początku kolejnego powinieneś mieć
wolną chwilę, zanim jeszcze dostaniesz coś nowego do testów. Ten czas można
wykorzystać na przygotowanie test casów lub napisanie testów automatycznych.

➢ Twoje doświadczenie – sam dobrze wiesz lub po pewnym czasie będziesz wiedział,
czego potrzebujesz, by Twoja praca była efektywna. Przypadki testowe mogą pomóc
dostarczyć zainteresowanym osobom potrzebnych informacji na temat testowanej
aplikacji. Na ich bazie można przygotować metryki pokazujące np. liczbę
planowanych i wykonanych test casów, liczbę tych, które zakończyły się sukcesem
i tych, które nie przeszły. Takie metryki mogą być przygotowane dla całej wersji
aplikacji, poszczególnych funkcjonalności lub wymagania.

Czy zatem warto pisać przypadki testowe?

Podsumowując, to czy i jaką dokumentację będziesz przygotowywać, może być narzucone
lub zależeć od Ciebie, ale bardzo silnie zależy od kontekstu. Jest to zdecydowanie dobra
metoda na spisanie zdobytej wiedzy na temat testowanej aplikacji. Może też pomóc
w rozpoczęciu automatyzacji, bo będziesz mieć już opisane scenariusze, które można
później oskryptować.

W ten sposób udokumentujesz też testy, które wykonałeś. Możesz wykorzystać tę
dokumentację jako dowód, gdy później coś się wysypie. Przypadki testowe mogą się też
przydać w procesie wprowadzania nowych członków zespołu do projektu lub gdy będziesz
potrzebować chwilowego wsparcia, np. podczas regresji. Jeśli nikt nie narzuca konkretnej
formy dokumentacji, warto rozważyć mapy myśli, które zdecydowanie się sprawdzają.

Czasami jednak możesz mieć okazję realizować projekt dla klienta, który nie wymaga
dostarczenia jakiejkolwiek dokumentacji. Podobnie może być w przypadku firm
produktowych, w których sposób pracy zależy w dużej mierze od upodobań zespołu. Wtedy
warto rozważyć, czy inwestować czas w pisanie test casów, czy raczej skupić się na
testowaniu. Jak pisze Michael Bolton na swoim ​blogu​, test case to nie testowanie.

12

https://www.developsense.com/blog/2017/02/the-test-case-is-not-the-test/

Zgłoszenie defektu
Po przeczytaniu kilku poprzednich stron wiesz już, jak powinien wyglądać przypadek
testowy. Kolejnym etapem w pracy testera może być wykonanie testu i zaraportowanie
błędów w momencie zaobserwowania anomalii. Jak powinno wyglądać takie zgłoszenie i
jakie elementy zawierać? O tym za chwilę. Zajrzyjmy ponownie do „Słownika wyrażeń
związanych z testowaniem” SJSI i sprawdźmy definicję defektu.

Definicja definicją, a życie życiem. Często możesz spotkać się z pojęciami takimi jak defekt
oraz błąd (bug), które chociażby według ISTQB to osobne zagadnienia. W życiu codziennym
jednak te pojęcia są używane zamiennie i oznaczają nieprawidłowe zachowania systemu.
Zwykle możemy mówić o błędzie w działaniu aplikacji, gdy testowana funkcjonalność
zachowuje się niezgodnie ze zdefiniowanymi wymaganiami.

Poniżej znajdziesz przykład zgłoszenia defektu. Najpierw jeszcze kilka słów o tym, dlaczego
tak ważne jest, aby dbać o jakość zgłoszenia. Jest to istotne ze względu na zespołowy
charakter pracy. Takie zgłoszenie, zanim zostanie zamknięte, może przejść przez kilka osób.
Czasami może się zdarzyć tak, że są to osoby, które nie znają tej części aplikacji, której błąd
dotyczy. Warto więc zadbać o to, by opis był zrozumiały dla każdego. Uwierz mi, Tobie też to
pomoże w momencie, kiedy błąd trafi do Ciebie do retestów po kilku tygodniach lub
miesiącach od zgłoszenia. Warto wiedzieć, że niektóre zgłoszenia mogą być przeglądane
przez klienta w trakcie spotkania Defect Triage. Wtedy także dokładny i zrozumiały opis jest
bardzo przydatny.

13

Poniżej znajdziesz przykład zgłoszenia błędu. Przytoczony defekt został wykryty podczas
wykonania przypadku testowego podanego w rozdziale wcześniej. Błąd dotyczy zadania #20
w aplikacji Mr Buggy 3.

Najważniejsze informacje, które powinno zawierać poprawne zgłoszenie błędu, wymieniłem
powyżej. Poza tym przydadzą się też różne załączniki: logi, screeny albo nawet filmiki. Te
ostatnie dopiero niedawno zacząłem bardzo doceniać. W jednym z projektów testowałem
rozwiązanie dostarczane przez zewnętrzną firmę. Była to dla mnie nowość przede wszystkim
dlatego, że nie miałem możliwości bezpośredniego kontaktu z programistami. Komunikacja
była więc bardzo ograniczona, przez co jakość zgłoszeń była niezwykle ważna. Mówi się, że
jeden obraz wart jest więcej niż tysiąc słów. Filmiki rzeczywiście ułatwiały zgłoszenie
defektów zwłaszcza przy bardziej skomplikowanych ścieżkach i czasami trudnym do
opisania zachowaniu aplikacji.

Powyżej wymieniłem najbardziej powszechne elementy zgłoszenia. W praktyce często
dodaje się jeszcze inne istotne informacje:

➢ faza testów, w której błąd został wykryty, np. UAT, SIT, development

➢ czy błąd został znaleziony przez testy automatyczne czy manualne

➢ z jakim typem wymagań błąd jest związany, np. funkcjonalne, bezpieczeństwa,
wydajności.

Informacje te mogą pojawiać się w formie tagów lub labelek w zależności od użytego
narzędzia. Posiadanie tych danych pozwala na bardziej zaawansowane analizy
występowania błędów.

14

Sev​erity vs Priority (Ważność vs Priorytet)

Jak pewnie zauważyłeś, w zgłoszeniu defektu pojawiają się takie atrybuty jak Priorytet oraz
Ważność. Czas wyjaśnić, czym są te atrybuty i jaka jest między nimi różnica.

Priorytet ​błędu określa kolejność, według której błędy powinny być poprawiane. Niektóre
defekty mogą blokować testowanie danej funkcjonalności. W takim przypadku, nadając
najwyższy priorytet, możemy przekazać reszcie zespołu informację, że poprawka tego błędu
powinna zostać dostarczona w pierwszej kolejności. Przykładowe priorytety zostały
przedstawione na wykresie w podrozdziale dotyczącym metryk – Blocker, Critical, Major,
Minor.

Ważność ​błędu określa, jak bardzo problem jest istotny z punktu widzenia biznesu. Jego
wartość jest często powiązana ze stratami finansowymi lub wizerunkowymi. Przykładowe
wartości to: Critical, Major, Minor.

Często krytyczny priorytet przekłada się na ważność na poziomie krytycznym, ale nie zawsze
tak jest. Spójrz na przykłady poniżej.

Priorytet = krytyczny, Ważność = niska

Przykładem takiego błędu może być niewłaściwe logo na stronie głównej testowanej
aplikacji. Z jednej strony nie powoduje to problemu w używaniu aplikacji, ale może wpłynąć
na wizerunek firmy.

Priorytet = niski, Ważność = wysoka

Załóżmy, że testujesz aplikację, w której nie działa funkcjonalność wykorzystywana pod
koniec roku kalendarzowego. Przeprowadzasz testy w połowie roku. Fakt, że nie działa
ważna część systemu, powoduje, że ważność jest wysoka, ale ze względu na dużą ilość
czasu defekt może zostać poprawiony w kolejnej wersji.

Lista używanych wartości dla obu parametrów może się różnić w przypadku różnych
organizacji. Może też zależeć od użytego narzędzia, które ma zdefiniowane pewne domyślne
ustawienia. Często wartości te są konfigurowalne.

Zapamiętaj powyższe przykłady oraz poszukaj więcej w internecie. To zagadnienie dość
często pojawia się na rozmowach rekrutacyjnych.

Cykl życia defektu
Poniżej znajdziesz diagram z Jiry przedstawiający przykładowy cykl życia defektu. Dlaczego
przykładowy? Tak jak już wspominałem na kartach tej książki, nie ma jednej sprawdzonej
odpowiedzi na to pytanie. Cykl życia może się znacząco różnić między organizacjami
i zespołami. Z pewnością po wpisaniu takiego hasła w wyszukiwarce pojawi się wiele
różnych diagramów. Być może każdy z nich sprawdza się lepiej w innej sytuacji. Nie ma to
jednak większego znaczenia dla dalszych rozważań. Warto wiedzieć, że tak jest. Tak samo
jak to, że błędy mogą być zgłaszane przez dowolnego członka zespołu, a nie tylko przez

15

testera. Zresztą będziesz mieć też do czynienia ze zgłoszeniami od klienta. Te są zwykle
bardzo ciekawe, ale nie będę zdradzał tajemnicy. Po prostu trzeba samemu przez to przejść.

Wróćmy jednak do diagramu i przeanalizujmy, co się na nim dzieje.

➢ Zgłoszony defekt na początku swego życia ma status ​Open​.

➢ W kolejnym kroku może on zostać zamknięty (​Closed​) albo programista zacznie nad
nim pracować (​In progress​). Jeśli przyjrzysz się dokładniej, zauważysz, że błąd
może zostać zamknięty z poziomu wielu statusów. Powody mogą być różne, np.:
zgłoszenie jest duplikatem; po dyskusji z analitykiem lub klientem okazuje się, że to
nie jest błąd; defekt jest stary i został poprawiony przy okazji innych zmian; nie da się
zreprodukować defektu.

➢ Programista zmienia status na ​Ready To Test w momencie, gdy błąd został
poprawiony i można przystąpić do retestów.

➢ Status ​Testing ​oznacza, że błąd jest w trakcie weryfikowania.

➢ Jeśli w trakcie retestów okazuje się, że błąd nadal występuje, to tester oznacza go
jako ​Reopened ​i cała zabawa zaczyna się od nowa.

➢ Jeśli jednak błąd został poprawiony, tester zmienia jego status na ​Resolved​. W tym
statusie błędy zwykle czekają na wdrożenie danej wersji z poprawkami i dopiero
wtedy status zmieniany jest na ​Closed.

16

17

18

